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Abstract

Integrated whole-cell modeling is poised to make a dramatic impact on molecular and systems 

biology, bioengineering, and medicine — once certain obstacles are overcome. From our group’s 

experience building a whole-cell model of Mycoplasma genitalium, we identified several 

significant challenges to building models of more complex cells. Here we review and discuss these 

challenges in seven areas: (1) experimental interrogation, (2) data curation, (3) model building and 

integration, (4) accelerated computation, (5) analysis and visualization, (6) model validation, and 

(7) collaboration and community development. Surmounting these challenges will require the 

cooperation of an interdisciplinary group of researchers to create increasingly sophisticated whole-

cell models and make data, models, and simulations more accessible to the wider community.

1 Introduction

Predictive and comprehensive models of cellular physiology are critical to understanding 

and engineering biological systems. Such whole-cell models have the potential to guide 

experiments in molecular biology, enable computer-aided design and simulation in synthetic 

biology, and inform personalized treatment in medicine. Constructing and validating models 

with sufficient scope, detail, and predictive power, for a variety of cells, will be a massive 

undertaking.

Beginning in the late 1970s [1], researchers began modeling cell physiology, primarily using 

ordinary differential equation (ODE) approaches, creating increasingly detailed models over 

the next three decades [2, 3, 4]. Later, other groups introduced frameworks that generally 

require fewer parameters than ODE systems including constraint-based [5, 6] and Boolean 

methods [7]. Combining these approaches for their respective benefits, our group developed 

a hybrid methodology: we modeled individual biological processes, each with its own 

mathematical representation, and merged their outputs to compute the overall state of the 

cell [8]. Using this approach, we simulated the life cycle of individual Mycoplasma 
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genitalium cells, accounting for every molecule and representing the function of every 

annotated gene [9].

Several unforeseen obstacles arose during the modeling process, which should inform any 

future whole-cell modeling efforts. Specifically, modeling larger cells and more complex 

physiology presents challenges in (1) experimental interrogation, (2) data curation, (3) 

model building and integration, (4) accelerated computation, (5) analysis and visualization, 

(6) model validation, and (7) collaboration and community development, shown in Figure 1. 

No single research group can simultaneously innovate in all these areas. Rather, a broader 

community will need to coalesce to tackle these problems. We address this article to that 

community, discussing the challenges and highlighting notable progress in each area.

2 Experimental interrogation

Parameterizing and validating the M. genitalium whole-cell model was particularly 

challenging due to a lack of organism-specific data. Many values were estimated from 

measurements made in other species. Future efforts will ideally simulate well-characterized 

organisms, for example Mycoplasma pneumoniae [10, 11, 12, 13], Escherichia coli [14], 

and Saccharomyces cerevisiae [15, 16]. Because whole-cell models simulate the life-cycle 

of an individual cell, one would ideally use spatially-resolved, genome-scale, dynamic, 

single-cell measurements to parameterize and validate the models. However, many 

published measurements are static ensemble averages representing a population mean at a 

single time point [17, 18, 19, 20, 21]. This lack of data ultimately presents the modeler with 

a dilemma: either infer missing data, or create a less detailed model of a particular 

phenomenon. To create the M. genitalium model, we necessarily inferred some degree of 

dynamical behavior. Faced with a similar problem, others have found ways to incorporate 

static spatial data in their efforts to create dynamic 3D cell-scale simulations [22]. Promising 

work in advancing single-cell measurement techniques and technologies [23, 24, 25, 26] will 

ultimately drive more detailed and accurate modeling. To make these efforts even more 

impactful and useful, the experimental community could work to establish standardized 

conditions and place a higher value on consistent, reproducible measurements.

3 Data curation

No single technology exists which can chronically measure and record the entire state of a 

single cell. As a result, heterogeneous data sets must be combined and unified for model 

parameterization and validation. While efforts such as the BioCyc databases have sought to 

unify genomic and metabolic pathway information [27], separate databases contain 

functional parameters such as kinetic rates [28, 29] and expression levels [30]. To compile 

the data required to build the M. genitalium model, which we share via WholeCellKB [31], 

we had to download and synthesize parameters from these and other databases as well as the 

primary literature. For larger and more complex organisms, the sheer magnitude of data to 

collect, and the number of discrepancies to resolve, will present significant hurdles to 

parameterizing a model.

Since parameterization data increases with organism complexity and known physiology, a 

part-time manual curation effort will not be tenable. Researchers will need to exploit 
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advances in natural language processing to extract information from the primary literature 

en masse [32], or outsource part of the effort. Formally interacting with domain experts, as 

has been done in the flux-balance analysis community [33], will be critical to assembling 

consensus data sets. Ultimately, a combination of computer-automated and human-

augmented approaches will be necessary to gather and assemble the data for larger whole-

cell models.

A collection of centralized, organism-specific databases similar to WholeCellKB will be 

required for subsequent whole-cell modeling efforts. In the best case, researchers would go 

beyond including raw data for each figure in a paper [34] and would deposit their results to 

the appropriate database in a machine-readable format. Dedicated curators would update the 

database schemas to incorporate new types of information as needed. In addition, the 

databases would alert the community to significant discrepancies between parameters and 

flag them as critical issues to resolve. By providing these capabilities, the databases would 

link experimental evidence to whole-cell models.

4 Model building and integration

Comprehensively representing cell physiology in a single computational model requires 

integrating diverse phenomena over multiple length and time scales, handling the different 

levels of understanding associated with each phenomenon, and representing the state of the 

cell in sufficient detail. Our lab’s approach to meeting these requirements relies on the 

notion of biological modularity [35], allowing us to divide the cell into independent state 

variables (e.g., representing metabolite counts or the functional state of macromolecules) 

and cellular processes (e.g., transcription, metabolism) [9]. We create sub-models of each 

cellular process using a mathematical representation informed by available data and current 

understanding. We assume that, over a small time step, each sub-model can independently 

execute and update a subset of the cell state variables. To meaningfully combine sub-models 

in this fashion, we must (1) establish and link common variables, and (2) ensure that the 

combined behavior is consistent with physical laws and biological phenotypes.

To avoid duplicating work, it is desirable to incorporate published models of particular 

biological processes into a whole-cell modeling framework. This often requires that the 

published models be modified to use the common whole-cell state variables, which may, for 

example, involve changing the published model’s quantities from concentrations to counts, 

or linking its variables to the appropriate cell compartment in the whole-cell framework. 

Establishing mathematical methods for properly converting a spatially-resolved variable, 

used in a detailed sub-model, to a bulk quantity, or even to a Boolean value, used in a less-

detailed sub-model, would ease the data interconversion between sub-models. Numerical 

analysis of these methods could be performed to examine factors which affect stability and 

accuracy of the simulations, and to quantify numerical uncertainty in model predictions.

With a collection of sub-models that properly interface with cell state variables, it must 

further be enforced that their aggregate behavior does not violate physical laws. For 

example, the aggregate action of multiple sub-models should not result in the consumption 

of more resources than are present. To avoid this situation, we developed a method to 
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allocate cell state variables to biological processes proportional to each process’s need. In 

the future, this top-down approach could be replaced with one more grounded in physical 

laws.

Furthermore, the aggregate behavior of a collection of sub-models should be consistent with 

biological phenotypes. For instance, the small molecule, RNA, protein, and DNA mass 

fractions, must approximately double over the exponentially-growing cell’s life cycle. This 

requirement constrains certain sub-model parameters so that metabolism, for example, 

produces nucleotides and amino acids in the proportions needed by replication, transcription, 

and translation. The M. genitalium model performed this adjustment prior to simulation; 

however, new methods must be developed to update these loosely-coupled parameters 

during simulation. Importantly, this will enable proper incorporation of regulatory sub-

models [36, 37] which modify the nucleotide and amino acid demands as the RNA and 

protein expression profiles change in response to perturbations.

5 Accelerated computation

Computational simulation is a powerful scientific and engineering tool because it enables 

rapid and inexpensive exploration of alternative scenarios and hypotheses, as well as design 

optimization. Such investigations, however, hinge on efficient computation in order to 

explore a sufficiently large portion of parameter space. The whole-cell simulations of M. 

genitalium, which each took approximately ten hours to run, do not meet this criteria. We 

can extrapolate that, without innovation in this area, simulations of more complex organisms 

will take considerably longer to execute. High-performance parallelized computing 

technologies, such as the Compute Unified Device Architecture (CUDA) [38] or Message 

Passing Interface (MPI) [39], or even custom hardware platforms [40], in the spirit of Anton 

[41] or Neurogrid [42], should be adapted and investigated for their abilities to speed-up the 

execution of whole-cell simulations.

6 Data analysis and visualization

Raw simulation data, like raw experimental data, typically requires extensive analysis to be 

adequately understood and communicated. Techniques from machine learning and 

dynamical systems analysis could be used to explore and interrogate simulated single-cell 

phenotypes. These analyses could suggest novel hypotheses about the dynamics of single 

cells that wouldn’t emerge from static, population-averaged data.

To complement analysis technologies, advances are needed in large-data visualization. 

While our group released WholeCellViz to expose a portion of the M. genitalium data set 

[43], going forward more sophisticated tools must be developed, particularly for exploration, 

rather than just communication, of large data sets. This requires the development of not only 

new visual motifs for biological data, but also improvements in data processing and retrieval 

to enable interactive interfaces for manipulating entire data sets. Existing tools [44] offer 

these interactive exploratory interfaces, but generally operate on smaller data sets [45]. 

Fortunately, these problems are recognized as pressing issues by the visualization 

community [46]. Preliminary work has begun to explore new visual motifs for biological 
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data [47], [48], [49], and the high-performance computing community is supporting new 

techniques to improve data retrieval [50].

7 Model validation

Model predictions and experimental validation are linked by an iterative process in which 

each provides feedback on the other [51]. For the initial validation of the M. genitalium 

whole-cell model, we simply compared model predictions to as many heterogeneous data 

sets as possible that were withheld from model reconstruction. We have also used the model 

to predict the outcome of experiments which are performed subsequently [52]. Nevertheless, 

the validation process for the M. genitalium model has been guided more by intuition than 

by a systematic methodology. Ideally, a quantitative metric would exist to specify how much 

of a model has been validated and would point to data sets needed to improve the coverage 

of validation. More subtly, methods should be developed which can differentiate novel 

predictions (e.g., gene essentiality in the M. genitalium model) from outputs arising directly 

from parameter fitting (e.g., biomass composition in the M. genitalium model). These 

innovations would support more widespread model adoption by building trust in the 

predictions.

8 Collaboration and community development

Whole-cell models of more complex microbes and cell types will likely become community 

endeavors, particularly as the models grow in scope and detail. To facilitate interaction with 

the broader community, we released the entire code base for the M. genitalium whole-cell 

model under the MIT license [53], permitting open development and re-use. Going forward, 

we must engage the broader community in contributing to whole-cell model development. 

The interface between cell state variables and process sub-models must be explicitly 

documented in detail to lower the barrier to contribution. Furthermore, a formal plug-in 

system must be developed to simplify the incorporation of alternate sub-models for a 

particular process. At the project-management level, metrics to quantify contribution and 

guidelines for authorship need to be proposed and ratified. At the community level, 

workshops, conferences, and competitions [54] specifically focusing on whole-cell modeling 

need to be organized to engage the breadth of contributing researchers.

9 Conclusion

The need to address the aforementioned challenges provides a wealth of opportunities for 

interdisciplinary contribution by experimentalists, modelers, computer scientists, 

statisticians, bioinformaticians, and software engineers. We hope a community will form 

where scientists and engineers from diverse backgrounds can collaborate and innovate 

together to overcome these obstacles.

Whole-cell modeling can help researchers prioritize experiments by identifying knowledge 

gaps and by highlighting measurement discrepancies [52]. Additionally, the comprehensive 

scope of a whole-cell model enables predictions of the pleiotropic effects of perturbation 

[55], critical to the future of synthetic biology and personalized medicine. Addressing the 
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issues discussed here will enable whole-cell modeling to realize its potential, and in the 

process make an impact on model-guided science, synthetic biology, and medicine.
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Highlights

• Whole-cell models have the potential to impact science, bioengineering, and 

medicine.

• We highlight seven challenges in whole-cell modeling.

• We hope an interdisciplinary community will form to address these challenges.
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Figure 1. 
The interdisciplinary challenges faced by future whole-cell modeling efforts. A community 

of scientists and engineers will need to innovate together to surmount these challenges.
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